Local Peaks-Based Clustering Algorithm in Symmetric Neighborhood Graph
نویسندگان
چکیده
منابع مشابه
ON FUZZY NEIGHBORHOOD BASED CLUSTERING ALGORITHM WITH LOW COMPLEXITY
The main purpose of this paper is to achieve improvement in thespeed of Fuzzy Joint Points (FJP) algorithm. Since FJP approach is a basisfor fuzzy neighborhood based clustering algorithms such as Noise-Robust FJP(NRFJP) and Fuzzy Neighborhood DBSCAN (FN-DBSCAN), improving FJPalgorithm would an important achievement in terms of these FJP-based meth-ods. Although FJP has many advantages such as r...
متن کاملA Neighborhood-Based Clustering Algorithm
In this paper, we present a new clustering algorithm, NBC, i.e., Neighborhood Based Clustering, which discovers clusters based on the neighborhood characteristics of data. The NBC algorithm has the following advantages: (1) NBC is effective in discovering clusters of arbitrary shape and different densities; (2) NBC needs fewer input parameters than the existing clustering algorithms; (3) NBC ca...
متن کاملGraph Clustering using Symmetric Polynomials and Local Linear Embedding
Although graph structures have proved useful in high level vision for object recognition and matching, they can prove computationally cumbersome because of the need to establish reliable correspondences between nodes. Hence, standard pattern recognition techniques can not be easily applied to graphs since feature vectors and not easily contructed. To overcome this problem, in this paper we turn...
متن کاملFlow-Based Algorithms for Local Graph Clustering
Given a subset A of vertices of an undirected graph G, the cut-improvement problem asks us to find a subset S that is similar to A but has smaller conductance. An elegant algorithm for this problem has been given by Andersen and Lang [AL08] and requires solving a small number of single-commodity maximum flow computations over the whole graph G. In this paper, we introduce LocalImprove, the firs...
متن کاملTopic Mining Based on Graph Local Clustering
This paper introduces an approach for discovering thematically related document groups (a topic mining task) in massive document collections with the aid of graph local clustering. This can be achieved by viewing a document collection as a directed graph where vertices represent documents and arcs represent connections among these (e.g. hyperlinks). Because a document is likely to have more con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2019.2962394